MMMPO Downtown Microsimulation Study

May 22, 2024

Presenters

- Bill Austin, AICP Executive Director MMMPO
- Colin Frosch, PE WVU BSCE, MSCE, and MBA graduate Fairmont, WV Native Kimley-Horn – Reston, VA
- Tim Padgett, PE Kimley-Horn – Raleigh, NC

Agenda

- Project Purpose Bill
- Overall Study Approach and Study Area Colin
- Preliminary Existing Conditions Analysis Results Colin
 - Existing and Historic Traffic Volumes
 - Origin-Destination Analysis
 - Crash Analysis
- Developing the Routing and Future volumes Tim
- TransModeler microsimulation components and calibration Colin

Project Purpose

To recommend potential future reconfigurations of the downtown Morgantown transportation network based on:

- Assessment of existing safety, parking, and congestion
- Input from the community and stakeholders
- A robust microsimulation model of the network

Potential reconfigurations under consideration

- Road diet(s) to promote non-motorized travel
- Closure of Grumbein's island
- Modifications to one-way streets
- Evaluating proposed land use changes
- Signal timing changes

Grumbein's Island

- Centrally located on WVU's
 Downtown campus
- High pedestrian volumes create a "choke point" for north-south vehicular traffic
- Potential closure of island will need to answer the question – "where will drivers go, and what effect will that have on the network"?
- This study will use TransCAD and TransModeler to address this question

Study Approach

Existing Conditions

Historic AADT Volume Trends

2018 – 2023 Comparison

Intersection	AM Peak Total Intersection Volumes (%Diff)	PM Peak Total Intersection Volumes (%Diff)	
Beechurst Ave and 8th St	-23%	-5%	
Beechurst Ave and 6th St	-34%	-15%	
Beechurst Ave and 3rd St	-31%	-13%	
Beechurst Ave and Campus Dr	-9%	-20%	
Beechurst Ave and Hough St	-35%	-19%	
Beechurst Ave and University Ave/Fayette St	-38%	-13%	
University Ave and Walnut St	-29%	-10%	
University Ave and Pleasant St	-26%	-7%	
	9-38% Decrease	5-20% Decrease	

Peak Hour Comparison

	2018	2023		
AM Peak	7:30 – 8:30 AM	7:45 AM – 8:45 AM		
Mid-Day Peak	N/A	12:15 – 1:15 PM		
PM Peak	4:30 – 5:30 PM	4:30 – 5:30 PM		

Notable Changes in Travel Patterns

AM

- Beechurst and 3rd: 8% from NBT to NBR
- University and Pleasant: 8% from EBL to EBT
 PM
- Beechurst and 8th: 10% from WBL to WBR
- Beechurst and Campus: 7% from SBL to SBT
- University and Walnut: 8% from WBL to WBR
- University and Pleasant: 14% from EBT to EBR

Weekday Pedestrian Volumes at Grumbein's Island

Crash Analysis

	Collision Type							
Veer	Angle Creshes		Door End	Backed into	Sidoguino	Single Vehicle	Total	
rear	Angle Crashes	пеаа-Оп	RearEnd	Crasnes	Sideswipe	Crash	IOLAI	
2018	139	10	91	6	57	43	346	
2019	124	8	86	4	46	40	308	
2020	66	10	52	6	43	27	204	
2021	110	7	46	3	41	55	262	
2022	89	6	53	2	40	33	223	
Total	528	41	328	21	227	198	1343	

Crash Analysis

'More Frequent' Crash Locations:

- University Avenue and Pleasant Street
- University Avenue and Garrett Street/Foundry Street
- University Avenue and Beechurst Avenue and Fayette Street

Crash Analysis

Severity = (# of Injury Crashes x 11.2) + # of PDO Crashes

'More Severe' Crash Locations:

- University Avenue and Pleasant Street
- University Avenue/Don Knotts and Garrett Street/Foundry Street
- University Avenue and Beechurst Avenue and Fayette Street
- High Street and Pleasant Street
- University Avenue and Walnut Street/Water Street
- University Avenue and Campus Drive/Stewart Street
- University Avenue and Falling Run Road
- Stewart Street and Van Gilder Avenue

Development of Routing

Existing Routing Development

- **'Relay' Routing** Vehicles make decision at each intersection, then reach new decision point
 - Pros Simple to match to TMCs
 - Cons Not as representative of field travel patterns
- Origin-Destination Routing Vehicles take one route through entire network to destination
 - Pros Accurate representation of field data
 - Cons Requires more data input

Streetlight – External Trips into Study Area University Avenue (Route 119) NB

Streetlight – Trips within Study Area University Avenue (Route 119) NB

Streetlight – External Trips into Study Area Monongahela Boulevard SB

Streetlight –Trips within Study Area Monongahela Boulevard SB

Origin-Destination Routing

- Routing Development
 - All entrances and exits to networks
 - ~30 origins and destinations
 - Develop trends of travel patterns to and through Morgantown

Streetlight- ODs

PM Peak Passenger Car OD Trends

O-D Pair

Streetlight Origin-Destination Analysis

Origin-Destination Routing Development

- Collect turning movement counts
 - Calculate link level ADTs and link level hourly volumes (target matrix)
- Streetlight O-D Matrix
 - Typical distribution of traffic throughout downtown Morgantown (seeding matrix)

Future Forecasted Growth

Development of Microsimulation Model

Preview of TransModeler Microsimulation

- Tool to simulate future conditions and better understand impacts of potential changes to network
- Models individual vehicles and pedestrians simulates how they interact within the road network
- Required inputs:
 - \circ Traffic volumes
 - Pedestrian crossings and activity
 - o Traffic signal control (16 signalized,
 - 18 unsignalized)
 - o Heavy vehicle data

- Existing O-D patterns
- o Planned projects by others
- Road characteristics (speed, # of lanes, etc.)

Existing Simulation Calibration

- Need to verify existing conditions model reflects actual traffic conditions observed in the field before proceeding with future models
- Calibration parameters
 - o Queueing
 - o Travel time
 - Turning movement and throughput volumes
- Calibration is accomplished by adjusting:
 - Routing and volume matrix
 - Pedestrian crossing configuration
 - o Global model characteristics such as driver behavior (if needed)

Simulation Recording from the Model

Next Steps

Stakeholder Engagement

Next Steps

- Complete calibration and summarize operational measures of effectiveness (MOEs)
- Develop wide ranging alternatives to study with steering committee
 - Signal improvements (leading pedestrian intervals)
 - Alternative intersection configurations
 - Modifications to network
- Screen alternatives and identify recommendations